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SUMMARY

This paper presents a fully coupled three-dimensional solver for the analysis of time-dependent fluid–
structure interaction. A partitioned time-marching algorithm is employed for the solution to the time-
dependent coupled discretized problem, thus enabling the use of highly developed, robust and well-tested
solvers for each field. Coupling of the fields is achieved through a conservative transfer of information at
the fluid–structure interface. An implicit coupling is achieved when the solutions to the fluid and structure
subproblems are cycled at each time step until convergence is reached. The three-dimensional unsteady
incompressible fluid is solved using a powerful implicit dual time-stepping technique with an explicit
multistage Runga–Kutta time stepping in pseudo-time and arbitrary Lagrangian–Eulerian formulation for
the moving boundaries. A finite element dynamic analysis of the highly deformable structure is carried
out with a numerical strategy combining the implicit Newmark time integration algorithm with a Newton–
Raphson second-order optimization method. Various test cases are presented for benchmarking and to
demonstrate the potential applications of this method. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The engineering modelling of multiphysics and multifield phenomena has over the past few decades
stimulated enormous interest among scientists. In recent years, fluid–structure interaction (FSI)
problems, in particular, have received increasing attention from the computational mechanics
community. This has been made possible by the advances in the computational modelling of both
fluid and solid structures and galvanized by further significant developments in terms of affordable

∗Correspondence to: C. Wood, Civil and Computational Engineering Centre, Swansea University, Swansea SA2 8PP,
U.K.

†E-mail: c.wood@swansea.ac.uk

Contract/grant sponsor: U.K. Engineering and Physical Sciences Research Council (EPSRC); contract/grant number:
EP/D074258

Copyright q 2008 John Wiley & Sons, Ltd.



556 C. WOOD ET AL.

computational resources. Within the current FSI research, time-dependent problems involving large
structural deformations are of particular interest. Within the biomedical field, for example, the
interaction of a viscous incompressible fluid, such as blood with a deformable membrane, as found
within heart valves, arteries or veins represents an extraordinary challenge. Research within the
biomedical field could influence many aspects of diagnosis and treatment as well as the design
and implementation of components such as artificial heart valves, stents and many others [1–4].

Two categories of methods can be identified within FSI: non-boundary-fitting methods and
boundary-fitting methods. The former category of non-boundary-fitting methods encompasses a
range of closely related methods that originate from the immersed boundary method, pioneered
by Peskin [5], whereas within the latter category of boundary-fitting methods, one of the most
well-known techniques used is the arbitrary Lagrangian–Eulerian (ALE) formulation. Further
distinctions between methods can be made depending on the choice of the time integration scheme
employed; semi-discrete methods combining a discrete time integration scheme and spatial finite
elements have been applied in [6–9], whereas finite element interpolations over both space and
time domains, known as the space–time finite element method, have been applied in [10–14].
An important aspect of boundary-fitted methods, which makes them particularly advantageous
within the modelling of the FSI problems, is the ability to capture the position of the moving
fluid–structure interface very accurately.

In a general case, the ALE formulation allows arbitrary motion of points within a mesh with
respect to their frame of reference by taking the convection of these points into account, as described
in [15, 16] and many others. In the case of a FSI analysis, points within the reference spatial
domain are moved in a Lagrangian manner to capture the moving interface between the fluid and
the structure. Within the fluid domain, the Navier–Stokes equations are resolved with kinematic
boundary conditions, which ensure the geometric conservation of the deforming fluid domain. The
solid structure is usually analysed by a standard finite element technique resolved in a Lagrangian
format [17, 18], together with natural boundary conditions provided by the Cauchy stress field
generated at the interface with the fluid. Three further components are required to resolve the
problem; firstly, a technique for transferring information at the interface, which guarantees the
conservation of the system. Secondly, a non-expensive numerical strategy for the movement of
the referential fluid mesh [19–21] and, finally, a robust and efficient solution procedure to ensure
an accurate coupling of the system.

Two main techniques have emerged within the ALE methods for FSI: monolithic methods
and partitioned methods. In the monolithic approach of [22], the discretized model equations for
fluid and structure are integrated in time as one system for a simple piston problem, whereas in
[11] the discretized model equations for fluid, structure and coupling conditions are formulated
in a single equation system and solved simultaneously with the pseudo-structural moving mesh
solved subsequently within the iteration loop. In contrast, by adopting a partitioned approach, each
physical field is separately defined, discretized and numerically solved with coupling procedures
applied to transfer the required interface information. Although the interacting fields are not solved
simultaneously, a partitioned coupling scheme can require very few resolutions of the coupled
problem at each time step for sufficient coupling to be achieved. These schemes are found to be
very attractive as they allow the modularity of each of the field solvers to be retained [23], enabling
the use of highly developed specialized codes that can be tailored to the specific problem at hand.
The methodology presented in this paper can be included within this latter category.

The layout of this paper is outlined as follows: Section 2 presents the governing equations for
the incompressible fluid field in an ALE format along with a finite volume solution algorithm.
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In Section 3, a finite element solution algorithm for the dynamic structural equilibrium equation
is outlined. Section 4 presents a partitioned coupling procedure that enables the strong coupling
of both fields. Furthermore, several strategies for the geometric deformation of the fluid domain
are described. In Section 5, the robustness of the scheme is proven with a benchmark numerical
example. Subsequently, to demonstrate the capabilities of the scheme, a fully three-dimensional
biomedical model is presented. Finally, in Section 6 some conclusions are drawn.

2. UNSTEADY INCOMPRESSIBLE FLUID FLOW WITH MOVING BOUNDARIES

The transient incompressible flow field is governed by the Navier–Stokes continuity and momentum
equations. To improve the conditioning of the resulting hyperbolic system of equations, the artificial
compressibility approach, first proposed by Chorin [24] and later extended by Turkel [25], is
employed. An implicit dual time-stepping technique with explicit multistage Runga–Kutta time
stepping in pseudo-time and an ALE formulation enable unsteady flows with moving boundary
components to be included.

2.1. Governing equations

With the development of an ALE solution procedure in mind, the time-dependent Navier–Stokes
equations, modified using the artificial compressibility approach [24, 25], are considered in the
integral form

∫
�(t)

P−1 �U
��

d�+ Ī
d

dt

∫
�(t)

Ud�+
∫

��(t)
(F j −F̄ j )n j dS−

∫
��(t)

G j n j dS=0 (1)

over a time-dependent three-dimensional domain �(t) bounded by a smooth closed surface ��(t).
Here, n j is the j th component of the outward unit normal vector to �� of a cartesian coordinate
system, t is the physical time and � denotes pseudo-time. The non-dimensionalized vectors of
unknowns U, the inviscid, ALE and viscous fluxes F j , F̄ j and G j are given by

U=

⎡
⎢⎢⎢⎢⎣

p

u1

u2

u3

⎤
⎥⎥⎥⎥⎦ , F j =

⎡
⎢⎢⎢⎢⎣

u j

u1u j + p�1 j

u2u j + p�2 j

u3u j + p�3 j

⎤
⎥⎥⎥⎥⎦ , F̄ j =

⎡
⎢⎢⎢⎢⎣

0

u1û j

u2û j

u3û j

⎤
⎥⎥⎥⎥⎦ , G j =

⎡
⎢⎢⎢⎢⎣

0

�1 j

�2 j

�3 j

⎤
⎥⎥⎥⎥⎦ (2)

where the standard summation convention on repeated indices is used and j =1,2,3. In these
expressions, �F denotes the fluid density, u j the component of the velocity vector in the x j
direction, p the pressure, û j the velocity of the control-volume boundary and �i j the Kronecker
delta operator. Additionally, �i j are the components of the deviatoric stress tensor formulated as

�i j = 1

Re

(
�ui
�x j

+ �u j

�xi

)
(3)
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Finally, Ī is a modified unit matrix and P is a preconditioning matrix for the pseudo-time equation
system [24, 25]

Ī=

⎡
⎢⎢⎢⎢⎣
0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ , P=

⎡
⎢⎢⎢⎢⎢⎣

�2 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ (4)

where the parameter � can be viewed as a relaxation parameter for the pseudo-time solution
procedure, with its value selected so as to optimize the convergence of the solution procedure [26].
On the basis of numerical experiments, the value of � is defined as

�2=max(�2min,C�|u|2) (5)

with �2min=1 and C� =2.5.

2.2. Physical time discretization

Following the discretization of the physical time t , Equation (1) may be expressed as

[Pm]−1
∫

�(t)

dU
d�

∣∣∣∣
m

d�+ Ī
d

dt

∫
�(t)

U|m d�+
∫

��(t)
(Fm

j −F̄m
j −Gm

j )n j dS=0 (6)

where the superscript m denotes an evaluation at time t= tm . The three-level, second-order, back-
ward difference representation for a control volume �I (t)

d

dt

∫
�I (t)

U|m d�= 1

�t

(
3

2
�m

I U
m−2�m−1

I Um−1+ 1

2
�m−2

I Um−2
)

=T(Um) (7)

is employed for the approximation of the physical time derivative, where �t= tm+1− tm denotes
the physical time step.

2.3. Dual mesh construction

To develop a cell vertex finite volume method for the spatial discretization of the governing
equations, identification of a dual mesh is required. This dual mesh, illustrated in Figure 1, is
constructed by connecting edge midpoints, element centroids and face centroids of the basic
tetrahedral fluid mesh, in such a manner that only one node is contained within each dual mesh
cell. The dual mesh cells then form the control volumes for the subsequent finite volume algorithm.
Equation (6) is then applied to each dual mesh volume in turn. For the sake of brevity, here we
develop only the form of the discrete equation at interior nodes I of the mesh. For a more detailed
presentation of the algorithm, refer [27–30].
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Figure 1. The dual mesh surrounding an internal node I .

2.4. Treatment of the inviscid and viscous fluxes

To evaluate the approximation of the integral, we adopt an edge-based implementation in which
the coefficients for each edge are calculated by using the dual mesh segment associated with the
edge. For an internal edge connecting nodes I and J , these coefficients are computed as

Cm
j,I J = ∑

K∈�I J

Am
�K
I
n

�K
I ,m

j (8)

where Am
�K
I
is the area of facet �K

I , and n
�K
I ,m

j is the j th component of the unit normal vector

to the facet from the viewpoint of node I at time level m. Then, assuming that the integrand is
constant over the segment and equal to its value at the midpoint of the edge, the inviscid and
viscous flux terms are approximated as∫

��m
I

(Fm
j −Gm

j )n j dS= ∑
J∈�I

Cm
j,I J

2
[(Fm

j,I +Fm
j,J )−(Gm

j,I +Gm
j,J )] (9)

where �I denotes the set of all nodes connected to node I by edges in the mesh. From Equations
(2) and (3), it is apparent that the evaluation of Gm

j,I and Gm
j,J requires the evaluation of the

gradients. At a typical interior node I , these derivatives are obtained, by again using the approach
adopted above, as

�ui
�x j

∣∣∣∣
I

= 1

�I

∑
J∈�I

C j,I J

2
(ui,I +ui,J ) (10)

which results in a second-order accurate discretization with a non-compact computational stencil
which stretches over five points.
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2.5. Treatment of the ALE fluxes

An important property of Equation (1) is geometric conservation. The geometric conservation law
(GCL), first shown in [31], requires that the control-volume movement itself has no direct effect
on the fluxes, in the sense that if the unknown field is constant, the numerical solution does not
change in time in the presence of a moving mesh, i.e. from Equation (1)

d

dt

∫
�(t)

d�−
∫

��(t)
û j n j dS=0 (11)

It is desirable to retain this quality numerically, after discretization. This has led to the so-called
discrete geometric conservation law (DGCL), as advocated in [32–34], which governs the geometric
parameters of the numerical scheme, such as grid positions and velocities, so that the corresponding
numerical scheme exactly reproduces a constant solution.

The numerical integration of the ALE fluxes is performed in the usual manner by summing the
edge contribution with the ALE edge coefficient Dm

I J introduced such that∫
��m

I

F̄m
j n j dS= ∑

J∈�I

Dm
I J

2
(Ūm

I +Ūm
J ) (12)

where Ū=[0,u1,u2,u3]T. The task of finding ALE coefficients that render the scheme geomet-
rically conservative is not trivial and has been treated by a number of authors [31–35]. Here the
approach of [35] is followed. From Equation (11), it can be stated that to maintain geometric
conservation at a discrete level, the change in volume of a moving cell I must be equal to the
volume swept by the its boundaries from time tm to tm+1

�m+1
I −�m

I =
∫ tm+1

tm

∫
��I (t)

ûi ni d�dt (13)

Assuming that the mesh moves in a linear manner between time levels tm and tm+1, as illustrated
in Figure 2, a local GCL expressing the change in volume due to the movement of a triangular
facet �K

I between time levels tm and tm+1 can be expressed as

�Vm+1,m
�K
I

=�t û
�K
I ,∗

i n
�K
I ,∗

i A∗
�K
I

(14)

where û
�K
I ,∗

i is the average facet velocity, A∗
�K
I
is the average facet area and n

�K
I ,∗

i is the average

normal. This term can be recognized as the contribution to the numerical ALE coefficient of a
single facet multiplied by the time step. Summing over all the facets of the boundary surface of the
control volume connected to the edge I J yields the expression for the edge-based ALE coefficient
for a first-order discretization in time as

Dm+1
I J = 1

�t

∑
K∈�I J

�Vm+1,m
�K
I

(15)

If the second-order time discretization given in Equation (7) is applied, a modified version of the
ALE flux must be employed to ensure discrete geometric conservation. The modification

D̂
m+1
I J = 3

2D
m+1
I J − 1

2D
m
I J

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:555–581
DOI: 10.1002/fld



DYNAMIC FLUID–STRUCTURE INTERACTION 561

I

1
2

m
c

−x

1
1

m
c

−x

1
3

m
c

−x

1m
c

+
2x

m
c2x

1
3

m
c

+x

1
1

m
c

+x

1
m
cx

3
m
cx

1mt t −=

mt t=

1mt t +=

, 1
1
m m
c

−r

, 1
3

m m
c

−r

, 1
2

m m
c

−r

1,
2

m m
c

+r

1,
3

m m
c

+r

1,
1
m m
c

+r

, 1K m
I

−Γ

,K m
IΓ

, 1K m
I

+Γ

, 1m mVδ −
Γ

1,m mVδ +
Γ

Figure 2. The linear motion of a triangular facet of the dual mesh over time levels m−1, m and m+1.

is adopted [36], which makes the numerical ALE coefficient second order in time. In addition,
velocity boundary conditions at the moving boundary are applied as

uw,m+1
I = 1

�t
(xm+1

I −xmI ) (16)

if a first order in time scheme is used or

uw,m+1
I = 1

�t

(
3

2
xm+1
I −2xmI + 1

2
xm−1
I

)
(17)

if a second-order backwards difference in time scheme is used, which is consistent with the dual
mesh velocity definition.

2.6. Solution procedure

If S j,I J ( j =1,2,3) denotes the components of a unit vector in the direction of the vector C j,I J ,
Equation (6) may be re-expressed as

�I
dUm

I

d�
=Rm

I (18)

where

Rm
I = ĪT(Um

I )−Pm
I

∑
J∈�I

{
Cm

I J

2
[(Fm

I +Fm
J )−(Gm

I +Gm
J )]−Dm

I J

2
(Ūm

I +Ūm
J )

}
(19)
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and

FI =S j,I JF j,I , GI =S j,I JG j,I , CI J =(C j,I JC j,I J )
1/2 (20)

At each physical time level t= tm , the value of Um is obtained by integrating Equation (18) in
pseudo-time to steady state using an explicit three-stage Runga–Kutta scheme. A stable compu-
tational procedure is achieved by the explicit of an artificial viscosity term, constructed in the
Jameson–Schmidt–Turkel manner [37]. Parallelization of the solution algorithm is implemented
by the domain decomposition multigrid approach using the single program multiple data parallel
architecture with the message passing interface model for communication of data. A more detailed
description of the solution procedure as well as verification of the robustness of the algorithm may
be found in References [27–30].

3. FINITE STRAIN HYPERELASTIC STRUCTURAL DYNAMICS

3.1. Kinematics and kinetics

From a kinetic perspective, the principle of conservation of linear momentum must be fulfilled.
This may be expressed in spatial terms as

�S(ẍ−f)−∇ ·r=0 (21)

where �S is the density of the deforming solid, vector ẍ represents the acceleration and body
forces are given by f. The symmetric second-order tensor r denotes the Cauchy stress tensor.
The dynamic equilibrium equation is integrated over a solid volume v with boundary �v along a
virtual velocity field �v to yield the virtual work expression of the dynamic equilibrium equation
as follows:

�W (�,�v)=
∫

v

r :�ddv−
∫

v

f ·�vdv−
∫

�v

t ·�vda+
∫

v

�Sẍ·�vdv=0 (22)

where t is the traction vector acting on the boundary, which results from considering Gauss’
theorem, and �d represents the rate of deformation tensor of the virtual velocity field. This
expression is highly nonlinear due to both geometric and material effects.

Owing to the large deformation nature of the solid displacement field, a finite strain continuum
approach is required to describe the solid behaviour. The solid structure is described in a standard
Lagrangian format such that the current position x of a material particle is related to the initial
position X by mapping � and the gradient of this mapping gives the deformation gradient tensor F

x=�(X), F= ��

�X
(23)

The symmetric right Cauchy–Green strain tensor C and the Lagrangian strain tensor E, which
measure the deformation that has taken place between the initial and final configurations, can be
obtained as

E= 1
2 (C−I), C=FTF and J =det(F) (24)

where the Jacobian J expresses the volume change between the initial and final configurations.
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3.2. Large strain hyperelasticity

The formulation presented in this paper encompasses large strain hyperelasticity in principal direc-
tions and is based on the stored strain-energy functional �. The strain-energy functional for hyper-
elastic materials may be formulated as functions of the strain invariants. Therefore, for the isotropic
case, � is a function of the three principal invariants of the right Cauchy–Green tensor C as

�(C)=�(IC , IIC , IIIC ) (25)

where the strain invariants are found by

IC = trC, IIC =C :C, IIIC =detC= J 2 (26)

Equivalently, � can be formulated in the alternative form

�(C)=�(�21,�
2
2,�

2
3) (27)

where {�A}A=1,2,3 are the three real, positive eigenvalues of the eigenvalue problem (C−�2AI)eA=0
and correspond to the three eigenvectors {e}A=1,2,3, the principal directions of strains. The three
values {�A=1,2,3} are the so-called principal stretches and I denotes the identity tensor. The strain
invariants of Equation (25) can be expressed as functions of �2A as

IC =�21+�22+�23, IIC =�21�
2
2+�21�

2
3+�22�

2
3, IIIC =�21�

2
2�

2
3 (28)

The stress–deformation relationship for a hyperelastic material is generated from the continuous
strain-energy function � by the relationship

S= ��

�E
=2

��

�C
(29)

where S denotes the second Piola–Kirchoff stress tensor, work conjugate to E.
The Neo–Hookean material model is the simplest case of a hyperelastic potential, which in the

case of incompressibility yields an expression for � as

�(C)=� tr[E]= 1
2�(tr[C]−3) (30)

where � symbolizes the material Lamè coefficient. Incompressible materials have the well-known
property that the volume is preserved, leading to the condition that

J = dv

dV
= III1/2C =detC1/2≡1 (31)

where the dilational ratio J expresses the ratio of the deformed volume dv of a body to its corre-
sponding undeformed volume dV . This incompressibility, using Equation (28), may be expressed
in terms of the principal stretches as

�1�2�3=1 (32)

In the particular case of plane stress, the incompressibility condition implies that C33IIIC2×2 =1,
where IIIC2×2 is the determinant of the in-plane components of C. Substituting C33 into
Equation (30) gives the hyperelastic potential and the resulting second Piola–Kirchoff stress tensor
for an incompressible Neo–Hookean type of material in the plane stress case as

�(C)= 1
2�(IC +III−1

C −3), S=�(I−III−1
C C−1) (33)
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Within the field of biomedicine, membranes subjected to low pressures tend to behave similar
to rubber-like materials [38] and a Neo–Hookean or Mooney–Rivlin hyperelastic potential is
often used. In this study, membranes are modelled using a Neo–Hookean-type material frequently
encountered in the literature [18], with a hyperelastic potential defined in terms of the logarithmic
stretches and the two-material Lamè parameters, with no bending resistance.

Considering the plane stress case corresponding to a membrane analysis, stress in the third
direction is constrained, i.e. �33=0. The hyperelastic potential � is expressed in terms of the
membrane principal stretches �1 and �2 as

�(�1,�2)=�[(ln�1)
2+(ln�2)

2]+ �̄

2
(ln j)2 (34)

where the parameter 	 and the effective Lamè coefficient �̄ are given by

	= 2�

�+2�
, �̄=	� (35)

and the three-dimensional volume ratio J is found as a function of the planar component j as
J = j	. The incompressibility constraint is enforced exactly by adjusting the eigenvalue of the tensor
C corresponding to the principal direction normal to the tangent plane of the membrane. Thus,
the principal stretch normal to the membrane surface, �3, simplifies to a dependent value, namely
the inverse of the determinant of the in-plane components of C, so that the current membrane
thickness h is always determined by the relationship

�3= 1

�1�2
= h

H
(36)

where H is the initial membrane thickness. The solution to other three-dimensional problems with
incompressible materials employs near-incompressibility to enforce the incompressibility condition,
thereby a volumetric energy component containing a penalty term is added to the distortional
component of the strain-energy functional [18].
3.3. Linearized equilibrium equations

The solution to the virtual work representation of the dynamic equilibrium equations given in
Equation (22) is found at discrete time intervals for the given material and loading conditions
by determining a deformed configuration �, which is in a state of dynamic equilibrium. This
equilibrium configuration is found using a Newmark time integration scheme in conjunction with
a Newton–Raphson iterative solution procedure and therefore requires a linearized form of the
nonlinear dynamic equilibrium equations.

Considering the implicit Newmark time integration scheme, the algorithm relating the approxi-
mations to the displacement, velocity and acceleration at time step m, denoted by xm , ẋm and ẍm ,
respectively, can be stated in its general form as

xm+1 = xm+�t ẋm+�t2[( 12 −�)ẍm+�ẍm+1]
ẋm+1 = ẋm+�t[(1−
)ẍm+
ẍm+1]

(37)

for time t=m�t , where �t is the time step. The selection of parameters 
=0.5 and �=0.25
corresponds to the trapezoidal rule. This scheme is unconditionally stable and second-order accurate
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for linear analysis, and when used with the appropriate time step size and sufficient equilibrium
iteration convergence, it is ideal for the solution to this nonlinear dynamic problem [39]. The
kinematic relationships in Equation (37) along with the virtual work expression in Equation (22)
form a system of nonlinear equations that are solved according to a predictor–corrector scheme.
Once a predicted value is established, namely xkm+1, ẋ

k
m+1 and ẍkm+1, correction is carried out upon

linearization along an incremental direction set by �x, �ẋ and �ẍ, respectively. Importantly, the
Newmark algorithm enables the increment in displacement �x or velocity �ẋ to be expressed in
terms of the increment in acceleration �ẍ as follows:

�x=��t2�ẍ, �ẋ=
�t�ẍ (38)

Given the highly nonlinear nature of Equation (22), a consistent linearization procedure is required
for optimum convergence. For a trial solution �k , the terms of the above spatial virtual work
equation can be linearized in the direction of an increment in the acceleration as follows:

�W (�k,�v)+D�W (�k,�v)[�ẍ]=0 (39)

where the directional derivative term represents the virtual work �W done during the increment
in acceleration from ẍ to (ẍ+�ẍ). The directional derivative of �W (�,�v) in the direction of an
increment in acceleration �ẍ can be considered in terms of the internal, external and inertial virtual
work components as

D�W (�,�v)[�ẍ]=D�Wint(�,�v)[�ẍ]−D�Wext(�,�v)[�ẍ]+D�Wine(�,�v)[�ẍ] (40)

Discretization of the linearized internal and external virtual work terms yields internal and external
tangent stiffness matrix components, derived from constitutive, initial stress and external forces,
whereas the discretized linearized inertia virtual work term yields the consistent mass matrix.

3.4. Finite element discretization

The spatial discretization of the continuous surface or volume is performed using an assembly of
isoparametric displacement-based finite elements, as described in standard texts such as [18, 39, 40],
with a library of elements ranging from 3-noded triangular surface elements with linear shape
functions (or equivalent 9-noded volume elements) to 16-noded quadrilateral surface elements with
cubic shape functions (or equivalent 64-noded volume elements), depending upon the problem
under consideration.

The finite element discretization of the equations of equilibrium yields the vectors of internal,
external and inertia nodal equivalent forces at node a of a finite element (e), namely T(e)

a , F(e)
a

and I(e)a as

T(e)
a =

∫
v(e)
r∇Na dv, F(e)

a =
∫

v(e)
Nafdv+

∫
�v(e)

Natda, I(e)a =
∫

v(e)
�SNa ẍdv (41)

where Na is the shape function corresponding to node a. Summing over all the nodes N of the
finite element discretization, the total virtual work �W (�,�v) is given by

�W (�,�v)=
N∑

a=1
�W (�,Na�v)=

N∑
a=1

�va ·(Ta−Fa+Ia)=0 (42)

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:555–581
DOI: 10.1002/fld



566 C. WOOD ET AL.

Assembling the nodal equivalent forces into global arrays and noting that the virtual nodal velocities
�va are arbitrary, the complete set of discretized nonlinear equilibrium equations can be expressed
symbolically in terms of the residual force R as

R(x)=T(x)−F(x)+I(ẍ)=0 (43)

3.5. Solution procedure

A Newmark predictor–corrector algorithm given in Equation (37) is employed for dynamic compu-
tational simulations and can be straightforwardly reduced to the static analysis case when necessary.
Following the finite element spatial discretization described previously, the discretized nonlinear
dynamic equations can be presented as

R=Mẍm+1+Cẋm+1+T(xm+1)−F(xm+1)=0 (44)

where M represents the assembled mass matrix, C a possible damping matrix to be included within
the calculations, T the assembled vector of equivalent internal forces, F the assembled vector of
equivalent external forces and R the assembled out of balance or residual equivalent force vector.
A quadratically convergent Newton–Raphson iterative algorithm is employed for the resolution of
the above system of equations (44) as follows:

ẍk+1
m+1= ẍkm+1+�ẍk, �ẍk =−

[
�R
�ẍ

∣∣∣∣
ẍ=ẍkm+1

]−1

Rk
m+1 (45)

where

�R
�ẍ

∣∣∣∣
ẍ=ẍkm+1

=M+
�tC+��t2(Kint−Kext) (46)

and the convergence of the scheme is improved by the use of a parametric line search procedure.

4. PARTITIONED SOLUTION PROCEDURE

4.1. Partitioned fluid–structure interface coupling

Following the approach of Farhat et al. [32], a conventional serial staggered solution procedure
with full subiteration at each time level, shown schematically in Figure 3, is applied. The four
steps of the scheme are outlined as follows:

1. Predict/correct the motion of the ‘wet’ boundary of the structure and update the deforming
fluid mesh.

2. Compute the new fluid pressure and velocity fields UF
m for the updated deforming fluid mesh

and the corresponding mesh velocities ûm−1, which enforce the displacement and velocity
boundary conditions of the moving fluid–structure interface.

3. Transfer the new fluid pressure field pFm to the structural discretization and calculate the
updated structural loading.

4. Compute the new dynamic structural response US
m to the fluid-induced loading.
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Figure 3. Partitioned staggered solution procedure with full subiteration.

Such a block Gauss–Seidel iterative scheme provides strong coupling of the partitioned fluid
and structure subproblems and, when implemented in conjunction with the implicit dual time-
stepping the scheme of the fluid solver and implicit Newmark/Newton–Raphson scheme of the
structural solver, enables a large physical time step to be maintained. Depending upon the time
step selected and/or the combined physical and geometrical parameters of the problem—certain
classes of problem frequently encountered in biomedical modelling can be severely destabilized
by the effects of the so-called added-mass phenomena [41, 42]—subiterations may or may not be
required at each time level for strong coupling to be achieved. In the examples presented here,
matching discretizations have been generated at the interface to avoid the errors associated with
data interpolation on highly non-matching discretizations during this implementation stage. Kinetic
energy is exchanged at the fluid–structure interface through a Dirichlet–Neumann partitioning as
follows: The dynamic mesh algorithm applies the Dirichlet boundary conditions defined by the
structural solution at the interface. The vector of unknowns of the fluid domain UF

m is solved at time
m for this deformed mesh, with mesh velocities ûm−1 calculated in a manner that is consistent with
the discrete time integration scheme of the fluid solver. The vector of unknowns of the structure
domain US

m is then solved at time m for the Neumann boundary conditions given by the fluid
loading at the interface. These Neumann boundary conditions are composed of normal pressures
and tangential shear forces due to the viscous fluid in contact with the structure. However, in
order to simplify this transfer of forces, it is considered that at this stage the transferred loadings
will be composed solely of the fluid pressure component pFm , which is taken as an average of the
nodal values for that surface element. Although this simplification could clearly lead to misleading
results in cases where shear effects are significant, care will be taken to select examples in which
any potential shear loading effect is negligible.

For strong coupling of the interacting fields, it is necessary that both displacement boundary
conditions and velocity boundary conditions are satisfied at the interface. That is,

xSm =xFm, ẋSm = ẋFm (47)

where xSm and xFm and ẋSm and ẋFm are the position and velocity, respectively, of the interface
in the fluid and structural domains at time m. The partitioned solution scheme ensures that the
compatibility of the fluid and structural domain displacement fields is maintained at the interface
all times, by applying the structural displacements at the interface as Dirichlet boundary conditions
for the dynamic mesh algorithm. Compatibility of the fluid and structural domain velocity fields
at the interface is achieved at each time step through corrective subiterations over the fluid and
structure subproblems.
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The relative convergence of the overall coupling procedure is measured at each time step as an
L2 norm of the variation in pressure at the interface surface over successive subiterations relative
to the pressure at the first subiteration. The L2 norm of the variation in pressure at subiteration n,
denoted by ‖�pn‖2, and the reference pressure norm, denoted by ‖�p0‖2, where n=0 indicates
the first subiteration, are calculated by

‖�pn‖2=
√

nnodes∑
i=1

(pni − pn−1
i )2, ‖�p0‖2=

√
nnodes∑
i=1

(p0i )
2 (48)

The relative convergence of the interface pressure per time step is then expressed as 1×10N ,
where order N is given by

N = log‖�pn‖2− log‖�p0‖2 (49)

4.2. Dynamic grid deformation

The application of the moving interface boundary conditions in time requires that the position of
the interface is captured accurately within the fluid domain mesh, ideally while maintaining the
connectivity of the original mesh and the required mesh quality. The spring analogy, first developed
by Batina [19] and later improved by Degand and Farhat [20], is a straightforward iterative strategy
that is widely used in aerodynamics and unsteady flow solutions. Every element edge within the
mesh is treated as a spring, with stiffness usually taken as the inverse of the length of that edge.
The static equilibrium equations for this network of springs are then solved for small increments
in the deforming boundary, by solving for the system

∑
J∈�I

sI J (lI J −lprevI J )=0 (50)

where lprevI J and lI J are the lengths of the edge between nodes I and J before and after the
movement, respectively, and sI J is the spring coefficient. This approach is robust for moderate
boundary movements but may not be sufficient for cases with complex movement patterns.

An alternative method to apply dynamic grid deformation, which is also implemented in this
study, is based on a Delaunay graph mapping [21]. This is achieved in the following manner: First,
using a Delaunay triangulation [43], the boundary discretization is generated. An example of the
boundary-conforming Delaunay triangulation of interior and exterior boundary points is shown in
Figure 4(a). All of the Delaunay triangulation points are coincident with the boundary points of
the unstructured discretization used for the fluid computation, shown in Figure 4(b), and therefore
the Delaunay triangulation forms the reference graph of the moving grid problem.

The Delaunay graph mapping procedure can be outlined as follows:

1. At the initiation of the problem, or if the reference Delaunay graph has been regenerated,
loop over every internal point of the fluid computational mesh and

(a) Search for the element of the graph within which the current point is contained.
(b) Calculate and store the volume coefficients of the reference mesh point relative to the

reference Delaunay graph.
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(a) (b)

(c) (d)

Figure 4. Mesh movement using Delaunay graph mapping: (a) the original Delaunay graph; (b) the original
tetrahedral mesh; (c) the moved Delaunay graph; and (d) the moved tetrahedral mesh.

2. For every physical time step,

(a) Apply the Dirichlet boundary conditions defined by the structural solution directly to the
interface nodes of the Delaunay graph to generate the moved Delaunay graph, as shown
in Figure 4(c).

(b) Looping over all the points in the mesh, calculate the mapping of the original fluid mesh
points onto the deformed Delaunay graph according to Equation (51).

(c) Output the mesh information file with the updated coordinates as shown in Figure 4(d).

The position of the mesh point P lying within the graph tetrahedra with points ABCD is uniquely
defined by the four relative volume coefficients, denoted by ei . The four tetrahedral sub-volumes
V1,V2,V3,V4, the total volume V and the corresponding relative volume coefficients ei =Vi/V are
calculated from the coordinates of the reference Delaunay graph points ABCD and the point P .
Looping over of all the points in the mesh, the moved point coordinates (x ′

P , y′
P , z′P) can then be

calculated by mapping the original fluid mesh coordinates onto the deformed Delaunay graph as
follows:

x ′
P =

4∑
i=1

ei x
′
i , y′

P =
4∑

i=1
ei y

′
i , z′P =

4∑
i=1

ei z
′
i (51)

The method utilizes an Alternating Digital Tree [44] search algorithm to efficiently locate the mesh
point within the Delaunay graph and is computationally inexpensive as the one-to-one mapping
is calculated only at the initiation or regeneration stages of the procedure. The method ensures
that primary mesh topology is maintained throughout the simulation and, unlike computationally
expensive iterative methods such as the spring analogy, extreme displacements can be applied at
the boundaries in a single step. This is because the movement of the boundary of the Delaunay
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graph is not restricted by issues of mesh entanglement or negative volumes that affect standard
mesh movement procedures. Although the algorithm cannot proceed directly if the prescribed
boundary movement renders the Delaunay triangulation invalid, this can be remedied by updating
the reference Delaunay graph to the most recent deformed configuration and recalculating the
one-to-one mapping between the meshes at that point.

5. NUMERICAL EXAMPLES

5.1. Flow-induced oscillations of a flexible cantilever

This two-dimensional problem has been reported extensively in the literature. Numerous authors,
such as Wall [9], Hübner et al. [11], Matthies and Steindorf [8] and Dettmer and Perı́c [6], have
assessed the quality of their numerical solution strategies for FSI by referring to this benchmark
physical problem. A two-dimensional mesh of triangles is extruded over the third dimension to
generate layers of tetrahedral elements. By employing appropriate symmetrical boundary condi-
tions, the three-dimensional strategy presented in this paper can be applied to generate an accurate
representation of the two-dimensional results reported for this problem.

A thin, elastic cantilever structure is situated in the wake of a rigid square solid body. For flows
with a Reynolds number beyond a certain value, the flow past the square bluff body generates
vortices, which separate from the leading corners of the rigid body with a stable frequency. This
is the well-known von Kármán vortex shedding. This oscillatory behaviour of the fluid results
in time-dependent lift forces, which excite the flexible beam and lead to a long-term oscillatory
motion of the structure, which is dependent upon the coupled FSI. The geometry and boundary
conditions of the domain are depicted in Figure 5. The material parameters of the fluid and structure
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Figure 5. Geometry and boundary conditions.
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are as follows: �F=1.82×10−4 g/cms, �F=1.18×10−3 g/cm3, �S=9.2593×105 g/cms2, �S=
0.1g/cm3 and Poisson’s ratio �=0.35. The fluid inflow velocity u∞ =51.3cm/s; thus, the Reynolds
number Re=�FLu∞/�F=333, where the length scale L=1cm corresponds to the length of the
side of the rigid square body. Two different finite volume–finite element representations of the
system are considered to prove the mesh independence of the scheme. Firstly, the three-dimensional
extruded fluid domain mesh is composed of 90 783 tetrahedra (23 334 nodes), while the structure
is modelled in two dimensions using a Neo–Hookean plane stress material with a discretization of
120 9-noded Laplace elements (567 nodes) with an aspect ratio of 0.1:0.02 and quadratic shape
functions to avoid artificial stiffening of the system. Similarly, in the second set of meshes the fluid
domain mesh is composed of 181 368 tetrahedra (46 164 nodes) while the structure is discretized
with 160 9-noded Laplace elements (805 nodes) with an aspect ratio of 0.05:0.03. To compare the
results of these simulations with those reported in the literature, the analysis is performed for time
steps of 0.005, 0.0075 and 0.01 s. To assess the performance of the partitioned coupling procedure,
the convergence of the scheme is presented for analyses with a fixed number of subiterations.

In this benchmark example, it is found that a single subiteration per time step provides insufficient
coupling at the interface. This leads to an unstable high-frequency oscillation of the structure.
However, two subiterations per time step achieves sufficient coupling at the interface for a stable
oscillatory motion of the structure to be achieved, as shown in Figure 6. The addition of further
subiterations enables the interface coupling conditions to be enforced even more accurately with
convergence typically reaching 1×10−4, as shown in Figure 7. In Figure 8, the unsteady nature of
the vortex shedding can be clearly distinguished. The evolution of the pressure contours and the
x-component of the velocity are displayed at various points of the beam oscillation. The efficacy
of the Newmark/Newton–Raphson solution algorithm of the structural solver, which iterates upon
the change in acceleration, is demonstrated in Figure 9, where a smooth, undamped solution in
time across acceleration, velocity and displacement is clearly achieved. The long-term coupled
beam tip displacement is found to be in the range |dmax|∈[1.10,1.20]cm with an average period of
oscillation in the range T ∈[0.32,0.36]s. These results compare very well with those documented
in the literature, which are summarized in Table I. The scheme is also verified for differing
discretizations, as shown in Figure 10, and for a range of time steps, as shown in Figure 11. These
results all converge to the same long-term oscillatory motion of the beam.

To assess the computational cost of the subiterative scheme, a summary of typical wall-clock
timings per subiteration and the corresponding convergence values for 10 subiterations are shown
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Figure 6. Beam tip displacement for 2, 4 and 10 subiterations.
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in Table II and displayed graphically in Figure 12. These timings are for computations on a Dell
PowerEdge SC1420 Server with two Intel Xeon processors and 2GB of SDRAM. It can be seen
that this example has a typical wall-clock time per time step of around 4min when 10 subiterations
are consistently applied, which results in a total run time of around four days per analysis.

5.2. Blood flow through a weakened artery

This three-dimensional problem is motivated by the growing need for accurate biomedical
modelling of the human body, specifically in the area of cardiovascular medicine. In particular,
doctors seek to understand more fully such critical issues as the role of wall shear stresses in
cardiovascular diseases [3, 4]. Other areas of research include ‘virtual surgery’ [3] to predict the
risk and various possible approaches prior to surgical intervention. This area of research could also
be highly useful in the design and use of devices such as stents and mechanical valves. To model
the systolic–diastolic cycle of blood flow through the arteries, pulsatile velocity–pressure boundary
conditions are applied in the fluid domain using an approximation of the Womersley formulation
[45], with prescribed time-dependent inflow velocities and outflow pressures. In addition, although
blood is known to be a complex, non-Newtonian fluid, it is assumed to be Newtonian in this
example. The length of the artery is taken as 10mm with a circular cross section of diameter 1mm.
To model the effect of a weakened area of arterial wall, 3mm of the mid-length of the artery is
composed of a deformable membrane material. The material parameters of the fluid and structure
are taken as follows: �F=4×10−3 g/mms, �F=1.0×10−3 g/mm3,�S=335.57×103 g/mms2

and Poisson’s ratio �=0.49. The thickness of the arterial wall, based on the information extracted
from medical imaging of real patients [4], is taken as t=0.075mm. The density of the artery wall
is considered to be negligible, enabling a quasi-static analysis of the structure to be performed.

Two patient cases are considered: normal blood pressure with a base (diastole) pressure of
80mmHg and a peak (systole) pressure of 120mmHg, and hypertension blood pressure, with a base
pressure level of 100mmHg and a peak blood pressure of 170mmHg. At the inflow boundary, the
prescribed flow profile corresponds to the undisturbed Poiseuille flow. The peak inflow velocity is
prescribed as u∞ =4000mm/s; thus, the Reynolds number is obtained as Re=�FLu∞/�F=1000,
where the length scale L=1mm is the diameter of the artery. Inflow velocity and outlet pressure
are assumed to vary according to the systolic/diastolic cycle in phase. The coupling procedure is
performed with five subiterations per time step. The discretization of the three-dimensional fluid
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Figure 8. Oscillation of a flexible cantilever: (a) pressure and (b) x-velocity.

domain is composed of 134 400 tetrahedra (26 331 nodes). The deformable membrane component
is modelled using the plane stress incompressible Neo–Hookean hyperelastic membrane material
described previously, with the structure composed of 4320 3-noded triangular membrane elements
(2196 nodes), see Figure 13.
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Figure 9. Beam tip acceleration, velocity and displacement.

Table I. Comparison of current results with those in the literature.

Author Period of oscillation T (s) Tip deflection dmax (cm)

Wall [9] 0.31–0.36 1.12–1.32
Matthies and Steindorf [8] 0.32 1.0–1.35
Dettmer and Perı́c [6] 0.32–0.34 1.1–1.4
Current work 0.32–0.36 1.10–1.20
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Figure 10. Beam tip displacement: comparison for coarse and fine discretizations.
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Table II. Convergence and wall-clock timings.

Subiteration Convergence Timing (s)

1 1.00 105
2 1.34×10−2 50
3 3.13×10−3 23
4 3.30×10−4 14
5 1.84×10−5 12
6 9.35×10−6 12
7 7.83×10−6 12
8 7.78×10−6 12
9 6.76×10−6 12
10 5.75×10−6 12
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Figure 13. Discretization of the fluid and structure domains.
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Figure 14. Normal and hypertensive blood pressure: wall movement.

Figure 15 shows the evolution of the aneurysm wall movement in time over several systolic/
diastolic cycles. Analysis of these results shows that in the case of normal blood pressure, the
base flow causes the aneurysm to swell by 3.0×10−2mm (6% of the radius) and at peak flow
this increases to 7.0×10−2mm (14% of the radius). In the hypertension case, the base flow
causes the aneurysm to swell radially by 4.0×10−2mm (8% of the radius) and at peak flow this
increases to 11.0×10−2mm (22% of the radius). Cuts through the domain, as shown in Figures 16
and 17, reveal the fluid pressure and velocity profiles within the aneurysm. It can be observed
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Figure 16. Fluid pressure. Normal BP: (a) diastole and (b) systole. Hypertension
BP: (c) diastole and (d) systole.

that the fluid velocity is greatly reduced in the area of the aneurysm. Comparison of the results
of the structural analyses for the normal and hypertensive pressure cases, as shown in Figures 18
and 19, reveal considerable differences in the membrane structural response for the two patient
cases, with maximum principal stretches of 1.23 in the hypertensive case and the corresponding
principal stresses nearly double that of the normal blood pressure case. These results are found to
be consistent over a range of time steps, with values of radial expansion due to the blood pressure
variations in each case comparing well with those in the literature [4]. The convergence history of
the scheme, as shown in Figure 14, indicates that the coupling procedure consistently reaches a
level of convergence below 1×10−4, with a typical wall-clock time per time step of around 7min
when five subiterations are consistently applied.
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Figure 17. Fluid x-velocity. Normal BP: (a) diastole and (b) systole. Hypertension
BP: (c) diastole and (d) systole.

Figure 18. Maximum principal stretches over the aneurysm. Normal BP: (a) diastole and (c) systole.
Hypertension BP: (b) diastole and (d) systole.

6. CONCLUSIONS

A computational partitioned coupling strategy for the modelling of large deformation FSI has been
presented, enabling a modular approach to be adopted for the fluid, structure and moving interface
subproblems. The accuracy of the algorithm is demonstrated with respect to reported results in
the literature for a benchmark example. The algorithm proven to be robust over a range of time
steps and discretizations and the computational efficiency of the subiterative coupling scheme
have also been assessed. The three-dimensional unsteady incompressible fluid is solved using a
powerful implicit dual time-stepping technique with explicit multistage Runga–Kutta pseudo-time
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Figure 19. Maximum principal stresses over the aneurysm. Normal BP: (a) diastole and (c) systole.
Hypertension BP: (b) diastole and (d) systole.

stepping and an ALE formulation for the moving boundaries, and it should be noted that this
coupling strategy would enable the fluid model to be extended to compressible and turbulent flow
regimes. The large deformation three-dimensional dynamic structure is solved using a finite strain
continuum approach with a quadratically convergent Newton–Raphson iterative scheme. Mesh
movement in three dimensions utilizes a Delaunay graph mapping procedure, which has been
found to be highly effective even for large boundary movements within the fluid domain. The
coupling strategy ensures compatibility of the displacement and velocity boundary conditions at
the interface at each time step, with corrective subiteration to ensure convergence of the interface
pressure field. This partitioned strategy seems ideally suited to the modelling of FSI problems
even for very flexible structures and further work on a coupling strategy with improved efficiency
is currently in preparation.
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